Computer Lab - Practical Question Bank FACULTY OF COMMERCE, OSMANIA UNIVERSITY

B.Com (Business Analytics) CBCS Semester – IV W.E.F.2022-23

Forecasting & Predictive Analytics - Paper: DSC - 403

Record	: 10
Viva-voo	ce : 10
Skill Tes	· · · ·

Total Marks : <u>35</u>

Unit 1:

Time: 60 Minutes

1. The data given below explain the attitude towards the city and the duration of residence.

Respondents	1	2	3	4	5	6	7	8	9	10	`11	12
Attitude towards the city	6	9	8	3	10	4	5	2	11	9	10	2
Duration of Residence	10	12	12	4	12	6	8	2	18	9	17	2

- a. Construct a scatter plot.
- b. Draw the regression line.
- c. Display the equation of the regression line.
- d. Display R^2 for the equation.
- e. Estimate the coefficient of determination.
- 2. Number of profiled customers (in millions) and Annual Sales in (\$Millions) for a Sample of 14 Sunflowers Apparel Stores are given below.

Store	Profiled	Annual Sales
	Customers(millions)	(\$ Millions)
1	3.7	5.7
2	3.6	5.9
3	2.8	6.7
4	5.6	9.5
5	3.3	5.4
6	2.2	3.5
7	3.3	6.2
8	3.1	4.7
9	3.2	6.1
10	3.5	4.9
11	5.2	10.7
12	4.6	7.6
13	5.8	11.8
14	3.0	4.1

- a. Assuming a linear relationship between the Attitude towards the city and the duration of residence, determine regression equation.
- b. Determine the regression coefficients $b_0 \mbox{ and } b_1$

- c. Interpret the meaning of the slope, b1 in this problem.
- d. Interpret R Square with respect to the data given.
- e. Estimate the coefficient of determination.
- In finance, it is of interest to look at the relationship between Y, a stock's average return and X, the overall market return. The slope coefficient computed by linear regression is called stock's beta by investment analysis. A beta greater than 1 indicates that the stock is relatively sensitive to changes in the market; a beta less than 1 indicates that the stock is relatively insensitive.

Y	10	12	8	15	9	11	8	10	13	11
Х	11	15	3	18	10	12	6	7	18	13

For the above data,

- a. Compute the beta
- b. Compute standard error
- c. What is the coefficient of determinant.
- d. Explain the significance of F.
- e. Explain the significance of t-statistic
- f. Test the model to see whether it is significantly less than 1. Use = 0.05
- 4. Campus stores has been selling the Believe It or Not: Wonders of Statistics Study Guide for 12 semesters and would like to estimate the relationship between sales and number of sections of elementary statistics taught in each semester. The following data have been collected.

Sales	33	38	24	61	52	45	65	82	29	63	50	79
No. Of	3	7	6	6	10	12	12	13	12	13	14	15
Sections												

- a. Develop the estimating equation that best fits the data both from scatter plot and from data analysis tool.
- b. Calculate the sample coefficient of determination.
- c. Draw Residual plots
- d. Draw normal probability plot and explain the output.
- e. Estimate the coefficient of determination.
- 5. Realtors are often interested in seeing how the appraised value of a home varies according to the size of the home. Some data on area (In thousands of square feet) and appraised value (in thousands of dollars) for a sample of 11 homes if given below.

Value 75 95 110 102 95 87 82 115 122 98 90	A	rea	1.1	1.5	1.6	1.6	1.4	1.3	1.1	1.7	1.9	1.5	1.3
	Va	alue	75	95	110	102	95	87	82	115	122	98	90

a. Estimate the Least Squares Regression to predict appraised value from area.

- b. Predict the value for the size of the home whose area is 1.8.
- c. What is the standard error of estimate.
- d. Generally, realtors feel that a home's value goes up by \$50,000 (50 thousands of dollars) for every additional 1,000 square feet in area. For this sample, does this relationship seems to hold? Use = 0.05

e. Predict the value for the size of the home whose area is 2.3

Y	25	30	11	22	27	19
X1	3.5	6.7	1.5	0.3	4.6	2.0
X2	5.0	4.2	8.5	1.4	3.6	1.3

- a. Calculate the multiple regression equation.
- b. Give the values of intercept bo, b1 and b2 values.
- c. Explain the significance of b0, b1, and b2 values
- d. Predict Y when $X_1 = 3.0 X_2 = 2.7$ from the regression equation obtained.

7. Find the multiple linear regression of Y on X1 and X2

· · .	I mu t	ne mun	upic ini	cui regi	Coolon	01 1 011	AI und	1 71~			
	Y	11	17	26	28	31	35	41	49	63	69
	X1	2	4	6	5	8	7	10	11	13	14
	X2	2	3	4	5	6	7	9	10	11	13

- a. Find the Multiple regression equation.
- b. What is R^2 for this regression? What is your inference?
- c. What is adjusted \mathbb{R}^2 for this equation? What is your inference?
- d. Explain R^2 and adjusted R^2 with reference to the variables and equation.
- e. Why is adjusted R^2 different from R^2 ?

8. The following data explains the attitude toward the City of Residence.

Sl.No.	1	2	3	4	5	6	7	8	9	10	11	12
Attitude toward the city	6	9	8	3	10	4	5	2	11	9	10	2
Duration of Residence	10	12	12	4	12	6	8	2	18	9	17	2
Importance attached to weather	3	11	4	1	11	1	7	4	8	10	8	5

- a. Find the regression equation. Mention the regression coefficients and their significance.
- b. Test the significance of the overall regression equation.
- c. What is the standard error of estimate.
- d. Explain the attitude toward the city in terms of durations of residence and importance attached to weather.
- e. Compare the regression coefficients and explain which attribute Duration of residence, Importance attached to weather has more influence on Attitude toward the city.

 We are trying to predict the annual demand for widgets (DEMAND) using the following independent vairables.
Price Price of Widgets (in S)

Price = Price of Widgets (in \$)

Income = Consumer income (in \$)

Sub = Price of a substitute commodity (in \$)

(A substitute commodity is one that can be substituted for another commodity. For example, margarine is a substitute commodity for butter) The below data is collected form 1982 to 1996.

Year	Demand	Price (\$)	Income (\$)	Sub (\$)
				. ,
1982	40	9	400	10
1983	45	8	500	14
1984	50	9	600	12
1985	55	8	700	13
1986	60	7	800	11
1987	70	6	900	15
1988	65	6	100	16
1989	65	8	1100	17
1990	75	5	1200	22
1991	75	5	1300	19
1992	80	5	1400	20
1993	100	3	1500	23
1994	90	4	1600	18
1995	95	3	1700	24
1996	85	4	1800	21

a. Using MS-Excel determine the best fitting regression equation .

- b. Are the signs (+) and (-) of the regression coefficients of the independent variables as one would expect? Explain briefly.
- c. State and interpret the coefficient of multiple determination for this problem
- d. State and interpret the standard error of estimate.
- e. Using the equation, what would you predict for DEMAND if the price of widgets was \$6 consumer income was \$1200, and the price of the substitute commodity is \$17.
- 10. Consider a study that examined the business problem facing a concrete supplier of how adding fly-ash affects the strength of concrete. (fly-ash is an inexpensive industrial waste by-product that can be used as a substitute for Portland cement, a more expensive ingredient of concrete.

Batches of concrete were prepared in which the percentage of fly-ash ranges from 0% to 60%. Data were collected from a sample of 18 batches and organized.

Fly-ash %	0	0	0	20	20	20	30	30	30
Strength	4,779	4,706	4,350	5,189	5,140	4,976	5,110	5,685	5,618
Fly-ash	40	40	40	50	50	50	60	60	60
%									
strength	5,995	5,628	5,897	5,746	5,719	5,782	5,895	5,030	4,648

a. Draw the scatter plot.

b. Draw the regression line.

- c. Display the regression equation
- d. Display R^2 and interpret the result.
- e. Describe the strength of association between the variables.
- 11. For the above data
 - a. Find the quadratic regression model for the concrete strength data.
 - b. Explain the linear and quadratic effect of fly-ash on strength of the concrete.
 - c. Explain the test for the significance of the Quadratic Model using F-stat.
 - d. Test the significant difference between the quadratic model and linear model for testing the quadratic effect.
 - e. If you select the 0.05 level significance, then explain the critical values for the t-distribution.
- 12. A real estate developer studying the business problem of estimating the consumption of heating oil by single family houses has decided to examine the effect of atmospheric temperature and the amount of attic insulation on heating oil consumption. Data are collected from a random sample of 15 single family houses.

Heating oil	Temperature	Insulation
275.3	40	3
363.8	27	3
164.3	40	10
40.8	73	6
94.3	64	6
230.9	34	6
366.7	9	6
300.6	8	10
237.8	23	10
121.4	63	3
31.4	65	10
203.5	41	6
441.1	21	3
323.0	38	3
52.5	58	10

- a. Find the multiple regression equation using two independent variables: atmospheric temperature and attic insulation
- b. For the excel regression model, interpret the results for predicting monthly consumption of heating oil.
- c. Draw the residual plot for attic insulation. Do you find some evidence of quadratic effect.
- d. If, then establish the quadratic regression model, by adding a quadratic term for attic insulation to the multiple regression model.
- e. Test the significance of quadratic effect.

13. The table gives the data of 30 respondents, 15 of whom are brand loyal (Indicated by 1) and 15 of whom are not (indicated by 0).

Loyalty	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Brand	4	6	5	7	6	3	5	5	7	7	6	5	7	5	7
Loyalty	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Brand	3	4	2	5	4	3	3	3	4	6	3	4	3	5	1
-------	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

- a. Draw the scatter plot.
- b. Find the regression equation.
- c. Interpret R²
- d. Interpret adjusted R^2
- 14. The table gives the data of 30 respondents, 15 of whom are brand loyal (Indicated by 1) and 15 of whom are not (indicated by 0). Attitude toward the Brand, Attitude toward the Product Category, and Attitude toward the Shopping experience are also measured. The objective is to estimate the probability of a consumer being brand loyal as a function of attitude toward the brand, the product category and shopping.

Loyalty	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Brand	4	6	5	7	6	3	5	5	7	7	6	5	7	5	7
Product	3	4	2	5	3	4	5	4	5	6	7	6	3	1	5
shopping	5	4	4	5	4	5	5	2	4	4	2	4	3	4	5
Loyalty	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Brand	3	4	2	5	4	3	3	3	4	6	3	4	3	5	1
Product	1	6	5	2	1	3	4	6	4	3	6	3	5	5	3
shopping	3	2	2	4	3	4	5	3	2	6	3	2	2	3	2

- a. Plot the scatter plot.
- b. Find the Regression equation.
- c. What are the degrees of freedom.
- d. Explain R^2 and adjusted R^2 .
- e. Explain the significance of each of the regression coefficients.
- f. Of the three independent variables, which variable is more significant to predict the brand loyalty.
- 15. One of the investments considered in The Principled Scenario is the entertainment industry. The table given below presents the yearly US and Canada movie attendance (in billions) from 2001 through 2014.

Year	2001	2002	2003	2004	2005	2006	2007
Attendance	1.24	1.14	1.34	1.39	1.45	1.33	1.52
Year	2008	2009	2010	2011	2012	2013	2014
Attendance	1.42	1.34	1.28	1.44	1.56	1.58	1.62

- a. Present the Time Series plot of this data.
- b. Describe the data.
- c. Draw the trend line to the data.
- d. Obtain the regression line to the data
- e. Obtain the R^2 for the data.

16. For the data given above

- a. Obtain a three year moving average.
- b. Draw the trend line graph for the 3 year moving average.
- c. Obtain the regression line and R².
- d. Forecast the attendance in the year 2016.

17. For the data given below

Year	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Sales	16.6	15.2	13.4	15.5	15.8	16.3	14.5	16.8	19.8	20.5
(in										
billions)										
Year	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Sales	21	19.2	18.3	21.9	23.1	24.5	28.7	31.9	30	35.1
(in										
billions)										

a. Obtain 5 year moving average

- b. Draw the trend line graph for the 5 year moving average.
- c. Obtain the regression line and normal probability plot
- d. Obtain the line fit plot.
- e. Forecast the Revenue in the year 2020.
- 18. According to The Coca-Cola Company's Website, revenues in 2014 were almost \$46 billion. The data given below lists The Coca-Cola Company's gross revenues (in \$billions) from 1998 to 204 are given.

Year	1998	1999	1200	2001	2002	2003	2004	2005	2006
Revenue	18.8	19.8	20.5	20.1	19.6	21.0	21.9	23.1	24.1
(in \$									
Billions)									
Year	2007	2008	2009	2010	2011	2012	2013	2014	2015
Revenue	28.9	31.9	31.0	35.1	46.5	48.0	46.7	45.9	50.1
(in \$									
Billions)									

- a. Obtain the linear trend model to forecast the revenues.
- b. Obtain the quadratic trend model to forecast the revenues.
- c. Using both the equations obtained, forecast the revenues for the year 2020.
- d. Do you find any difference in the expected revenues? If explain the reasons and the significance.
- e. Of both the models, which model can be considered?

19. For the data given above

- a. Find the Exponential trend model.
- b. Forecast the revenues for the year 2020.
- c. Compare the three models Linear Trend Model, Quadratic Trend Model and Exponential Trend model.
- d. Select the best model for the data given.

20. Find the Euclidean Distance for the following data in Excel.

X	1	3	4	7	8	10	15	18	20	21
Y	3	5	8	11	14	19	25	27	30	35

21. Form two clusters for the given 9 elements -

~ 1	. 1 01111 0	no crubte		e given e	elemente	<u> </u>				
	2	3	4	10	11	12	20	25	30	
										1

- a. How many combinations of clusters are possible.
- b. Which cluster is more suitable and Why?
- c. How many elements are in each of the cluster which is suitable for modelling.

22. From the data

Height	121	164	148	186	178	156	179	163	152	131
Weight	53	71	56	79	68	55	67	62	51	48
Height	138	166	189	123	178	161	149	189	176	159
Weight	53	68	83	54	74	58	52	78	67	52

Create a relationship model using the lm() function in R Display the regression model and creating the mathematical equation.

- 23. For the above data, check the non-linearity between weight and height.
- 24. For the above data, graphical evaluation of statistical assumptions for regression.
- 25. From the data "mtcars" data set, which has 32 observations and 11 variables, find the simple linear regression model.
- 26.Develop the regression model from the data set "state.x77" for applying regression analysis.
- 27.Check the multi-collinearity assumption using vif() function for the above data.
- 28.Develop the multiple regression model using step wise backward approach from the data set "Longley"
- 29. Develop best Regression Model using Stepwise Forward Approach using dataset 'Prestige" available in "car" package of R environment.
- 30. From the data set "Ratings for Wine" use KNN classifier to build a model for 5 neighbours and validate the data set.
- 31. From the data set "HouseVotes84" that can be downloaded from https://archive.ics.uci.edu/ml/datasets/congressional+voting+records this data set includes votes for each of the US house of representative. Congressmen on the 16 key notes identified by the CQA. Classify the algorithm using Naïve Baye's classifier. (note R does not support missing values. So delete missing values and then Classify in R)

32. From

https://archive.ics.uci.edu/ml/datasets/Occupancy+Detection

apply Naïve Baye's classifier to detect the Occupancy status.

33. From the dataset

<u>https://archieve.ics.uci.edu/ml/datasets/banknote+authentication</u> Appli Naïve Baye's classifier to detect the bank note authentication.

- 34. From the data "breast Cancer" data set, build the model to predict if the given tumor is benign or malignant depending upon the value of the Cell.size, Cell.Shape and Cl.thickness using the information available in the data set
- 35. From the data set Creditcard.csv

<u>https://www.kaggle.com/datasets/mlg-</u> <u>ulb/creditcardfraud?select=creditcard.csv</u> use Support Vector Machine to detect the fraud for credit card.

36. From

<u>https://archive.ics.uci.edu/ml/datasets/Occupancy+Detection</u> apply Decision Tree to decide the occupancy status.

37. Create the cluster analysis using R package for the following data.

			0	<u> </u>	0		0		
2	4	10	12	3	20	30	11	25	15
								•	

Explain the output.

- 38. From the data "Breast Cancer" data set, determine the utility of cluster analysis.
- 39. Apply the K-means cluster analysis using 3 clusters for "Breast Cancer" Data set.
- 40. From the data set "sample.stock.yields.1959.1969" explain the utility of Hierarchical clustering using average method.

A firm manufactures four different machine parts A, B, C and D using Copper and Zinc. The requirement of copper and zinc for each part and their availability and the profit earned from each part are given below:

Item	Requir	rements	Profits(Rs.)
item	Copper	Zinc	FIOIIIS(RS.)
Α	5	2	12
В	4	3	8

С	2	8	14
D	1	1	10
Availability	100	75	

- 41. What is the objective function that we need to optimize.
- 42. What are the decision variables that determine the objective function.
- 43. Write the constraints that the solution must satisfy.
- 44. What are the non-negative constraints.
- 45. How many of each part should be manufactured in order to maximize the profit.

MKV Foods Companyis developing a diet supplement called Hi-Pro. The specifications and the calorie, protein and vitamin content of three basic food are given below:

Nutritional	Units of nutritional elements per 100 gm			
elements	Basic foods			Hi-Pro
	F1	F2	F3	Specification
Calories	350	250	200	300
Proteins	250	300	150	200
Vitamin A	100	150	75	100
Vitamin C	75	125	150	100
Cost per 100	1.50	2.00	1.120	
gms (Rs.)				

- 46. What is the objective function that we need to optimize.
- 47. What are the decision variables that determine the objective function.
- 48. Write the constraints that the solution must satisfy.
- 49. What are the non-negative constraints.
- 50. Determine the quantities of F1, F2, F3 to be used to meet the requirements with minimum cost.